Folded Recurrent Neural Networks for Future Video Prediction
نویسندگان
چکیده
Main challenges in future video prediction are high variability in videos, temporal propagation of errors, and non-specificity of future frames. This work introduces bijective Gated Recurrent Units (bGRU). Standard GRUs update a state, exposed as output, given an input. We extend them by considering the input as another recurrent state, and update it given the output using an extra set of logic gates. Stacking multiple such layers results in a recurrent auto-encoder: the operators updating the outputs comprise the encoder, while the ones updating the inputs form the decoder. Being the encoder and decoder states shared, the representation is stratified during learning: some information is not passed to the next layers. We show how only the encoder or decoder needs to be applied for encoding or prediction. This reduces the computational cost and avoids re-encoding predictions when generating multiple frames, mitigating error propagation. Furthermore, it is possible to remove layers from a trained model, giving an insight to the role of each layer. Our approach improves state of the art results on MMNIST and UCF101, being competitive on KTH with 2 and 3 times less memory usage and computational cost than the best scored approach.
منابع مشابه
Application of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملAn Improved Neural Networks Prediction Model and Its Application in Supply Chain
Accurate prediction of demand is the key to reduce the cost of inventory for an enterprise in Supply Chain. Based on recurrent neural networks, a new prediction model of demand in supply chain is proposed. The learning algorithm of the prediction is also imposed to obtain better prediction of time series in future. In order to validate the prediction performance of recurrent neural networks, a ...
متن کاملPrediction of MPEG-coded video source traffic using recurrent neural networks
Predicting traffic generated by multimedia sources is needed for effective dynamic bandwidth allocation and for multimedia quality-of-service (QoS) control strategies implemented at the network edges. The time-series representing frame or visual object plane (VOP) sizes of an MPEG-coded stream is extremely noisy, and it has very long-range time dependencies. This paper provides an approach for ...
متن کاملAction-Conditional Video Prediction using Deep Networks in Atari Games
Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future image-frames depend on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.00311 شماره
صفحات -
تاریخ انتشار 2017